Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.086
Filtrar
1.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(4): 405-412, 2024 Apr 24.
Artigo em Chinês | MEDLINE | ID: mdl-38644256

RESUMO

Objective: To evaluate the predictive value of combined serum levels of trimethylamine N-oxide (TMAO) and trimethyllysine (TML) for poor prognosis in patients with heart failure. Methods: This single-center prospective cohort study included hospitalized patients with heart failure and complete baseline data from the Department of Cardiology at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from June 2017 to December 2020. Patients were categorized into four groups based on median serum levels of TMAO and TML after admission: TMAO low level TML low level group (TMAO<9.7 µmol/L, TML<0.73 µmol/L), TMAO low level TML high level group (TMAO<9.7 µmol/L, TML≥0.73 µmol/L), TMAO high level TML low level group (TMAO≥9.7 µmol/L, TML<0.73 µmol/L) and TMAO high level TML high level group (TMAO≥9.7 µmol/L, TML≥0.73 µmol/L). The primary endpoint was a composite endpoint of cardiovascular death and readmission for heart failure. Multiple factor Cox regression analysis was conducted to evaluate the correlation between serum TMAO and TML levels and poor prognosis in patients with heart failure. Results: A total of 471 patients with heart failure were included, with an mean age of (62.5±12.0) years and a median follow-up time of 1.61 (1.06, 2.90) years. Multivariate Cox regression analysis showed that after adjusting for age, gender, and traditional risk factors, the TMAO high level TML high level group had a higher incidence of primary endpoint events compared to the TMAO low level TML low level group (HR=1.71, 95%CI 1.05-2.77, P=0.03). Conclusion: Elevated serum levels of both TMAO and TML can effectively predict the occurrence of long-term adverse events in patients with heart failure.


Assuntos
Insuficiência Cardíaca , Lisina/análogos & derivados , Metilaminas , Humanos , Insuficiência Cardíaca/sangue , Metilaminas/sangue , Prognóstico , Estudos Prospectivos , Feminino , Masculino , Valor Preditivo dos Testes , Fatores de Risco , Pessoa de Meia-Idade
2.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641672

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Histonas/metabolismo , Genes da Neurofibromatose 2 , Lisina/metabolismo , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/genética , Camundongos SCID , Colangiocarcinoma/patologia , Proliferação de Células , Ductos Biliares Intra-Hepáticos/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
3.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584362

RESUMO

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Lisina/química , Proteínas/química , Aminas , Aldeídos
4.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635631

RESUMO

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Assuntos
Sirtuína 3 , Sirtuínas , Viroses , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Imunidade Inata , Lisina , Sirtuína 3/genética , Sirtuínas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
5.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654332

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Assuntos
Neoplasias da Mama , Proliferação de Células , 60599 , Regulação Neoplásica da Expressão Gênica , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Espermidina , Fator de Transcrição 4 , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Camundongos , Animais , Espermidina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Adenosilmetionina Descarboxilase/metabolismo , Adenosilmetionina Descarboxilase/genética , Movimento Celular/genética , Metilação de DNA , Prognóstico , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética
6.
Sci Rep ; 14(1): 9091, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643270

RESUMO

N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 µmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 µmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 µg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 µg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.


Assuntos
Acetilcisteína/análogos & derivados , Lisina/análogos & derivados , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Fentanila/farmacologia , Ratos Sprague-Dawley , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia
7.
Epigenetics ; 19(1): 2343593, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38643489

RESUMO

Previous studies have indicated that histone methylations act as mediators in the relationship between oestrogen receptor (ER) and breast cancer prognosis, yet the mediating role has never been assessed. Therefore, we investigated seven histone methylations (H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3 and H4K20me3) to determine whether they mediate the prognostic impact of ER on breast cancer. Tissue microarrays were constructed from 1045 primary invasive breast tumours, and the expressions of histone methylations were examined by immunohistochemistry. Multifactorial logistic regression was used to analyse the associations between ER and histone methylations. Cox proportional hazard model was performed to assess the relationship between histone methylations and breast cancer prognosis. The mediation effects of histone methylations were evaluated by model-based causal mediation analysis. High expressions of H3K9me1, H3K9me2, H3K4me2, H3K27me3, H4K20me3 were associated with ER positivity, while high expression of H3K9me3 was associated ER negativity. Higher H3K9me2, H3K4me2 and H4K20me3 levels were associated with better prognosis. The association between ER and breast cancer prognosis was most strongly mediated by H4K20me3 (29.07% for OS; 22.42% for PFS), followed by H3K4me2 (11.5% for OS; 10.82% for PFS) and least by H3K9me2 (9.35% for OS; 7.34% for PFS). H4K20me3, H3K4me2 and H3K9me2 mediated the relationship between ER and breast cancer prognosis, which would help to further elucidate the impact of ER on breast cancer prognosis from an epigenetic perspective and provide new ideas for breast cancer treatment.


Assuntos
Neoplasias da Mama , Histonas , Lisina/análogos & derivados , Receptores de Estrogênio , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Histonas/metabolismo , Histonas/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Pessoa de Meia-Idade , Prognóstico , Metilação , Idoso , Adulto
8.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668807

RESUMO

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Histonas/metabolismo , Histonas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo Secundário/genética , Lisina/metabolismo , Lisina/biossíntese , Processamento de Proteína Pós-Traducional , Metilação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Reprodução Assexuada/genética , Humanos
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Soja , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
10.
PLoS One ; 19(4): e0299926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625887

RESUMO

Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 µg/kg DM; P = 0.020), iodine 38% (604 to 373 µg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.


Assuntos
Caraciformes , Lisina , Animais , Lisina/metabolismo , Caraciformes/metabolismo , Sais/metabolismo , Valor Nutritivo
11.
Sci Adv ; 10(16): eadi1782, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630819

RESUMO

Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.


Assuntos
Glutaratos , Leucemia Mieloide Aguda , Lisina , Humanos , Necroptose , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
12.
Animal ; 18(4): 101127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574452

RESUMO

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Assuntos
Lactação , Lisina , Feminino , Bovinos , Animais , Lisina/metabolismo , Rúmen/metabolismo , Disponibilidade Biológica , Dieta/veterinária , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Aminas/metabolismo , Metionina/metabolismo
13.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
14.
J Mol Neurosci ; 74(2): 34, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565829

RESUMO

Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, ß-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.


Assuntos
Histona Acetiltransferases , Histonas , Animais , Camundongos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acetilação , Hipocampo/metabolismo
15.
Sci Rep ; 14(1): 7947, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575707

RESUMO

Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease which can lead to vision loss in severe cases. Currently, treatments of GO are not sufficiently effective, so novel therapeutic strategies are needed. As platelet-derived growth factor (PDGF)-BB induces several effector mechanisms in GO orbital fibroblasts including cytokine production and myofibroblast activation, this study aims to investigate the roles of histone lysine methyltransferases (HKMTs) in PDGF-BB-activated GO orbital fibroblasts by screening with HKMTs inhibitors library. From the total of twelve selective HKMT inhibitors in the library, EZH2, G9a and DOT1L inhibitors, DZNeP, BIX01294 and Pinometostat, respectively, prevented PDGF-BB-induced proliferation and hyaluronan production by GO orbital fibroblasts. However, only EZH2 inhibitor, DZNeP, significantly blocked pro-inflammatory cytokine production. For the HKMTs expression in GO orbital fibroblasts, PDGF-BB significantly and time-dependently induced EZH2, G9a and DOT1L mRNA expression. To confirm the role of EZH2 in PDGF-BB-induced orbital fibroblast activation, EZH2 silencing experiments revealed suppression of PDGF-BB-induced collagen type I and α-SMA expression along with decreasing histone H3 lysine 27 trimethylation (H3K27me3) level. In a more clinically relevant model than orbital fibroblast culture experiments, DZNeP treated GO orbital tissues significantly reduced pro-inflammatory cytokine production while slightly reduced ACTA2 mRNA expression. Our data is the first to demonstrate that among all HKMTs EZH2 dominantly involved in the expression of myofibroblast markers in PDGF-BB-activated orbital fibroblast from GO presumably via H3K27me3. Thus, EZH2 may represent a novel therapeutics target for GO.


Assuntos
Oftalmopatia de Graves , Histonas , Humanos , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Órbita/patologia , Oftalmopatia de Graves/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
16.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
17.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613960

RESUMO

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Assuntos
Aquicultura , Chlorella , Glucose , Microalgas , Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucose/metabolismo , Poluentes Químicos da Água/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradação Ambiental , Redes e Vias Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
18.
Nat Commun ; 15(1): 3200, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615014

RESUMO

Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1ß, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1ß expression, which thereby alleviate IL-1ß-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.


Assuntos
Histonas , Nefropatias , Humanos , Lisina , Ativação de Macrófagos , Rim , Senescência Celular , Células Epiteliais , Interleucina-1beta , Acetato-CoA Ligase
19.
Cells ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607088

RESUMO

Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.


Assuntos
Lisina , Fatores de Regulação Miogênica , Animais , Suínos , Fatores de Regulação Miogênica/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Cadeias Pesadas de Miosina/metabolismo
20.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Cisteína , Lisina , Oxirredução , Enxofre , Transaldolase , Espectroscopia por Absorção de Raios X , Lisina/química , Lisina/metabolismo , Cisteína/química , Cisteína/metabolismo , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Soluções , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...